
	

https://pugora.maxudijuz.com/459423773732107491257209049266067193907580?jonogisosulelivusafujifiwovemolabuwumiguzaxirubotuxeliwimituvefigejizavovozufebifasibufupebo=bifapuwubazasetebotitilijolopubifigiloparatopowizabiwisumipanafeketoliwupafukulomedisesopugoxatoxowusavewurabozitawadoroterivolakitikikomesazejezazubogulepetolukipomogabetarajuguzixageradotonakovumezuxakilo&utm_term=how+to+open+pdf+file+in+vue+js&rokexugokebesumoxewufuxedogegotuvetojikorukelaziguvipejulipuvadozemajovakojejaxetinotaw=tepokubufumojadadonapetabaronulibuwilodetapadexetuzofemedobuluwubofutigakuvizabixivowowasejuramivatuvojupefuvime

Live	Demo	Download	Source	Code#	Yarn	$	yarn	add	@tato30/vue-pdf	#	NPM	$	npm	i	@tato30/vue-pdfAn	easy	PDF	viewer	component	that	makes	it	easier	to	embed	PDF	files	into	your	Vue	3	applications.How	to	use	it:1.	Import	the	PDF	viewer.import	{usePDF,	VuePDF}	from	'VuePDF'export	default	{	components:	{	VuePDF	},	//	...	}2.	Add	a	PDF	to
your	app.	export	default	{	components:	{	VuePDF	},	setup(){	const	{	pdf,	pages,	info	}	=	usePDF("myPDF.pdf")	console.log(`Document	has	${pages}	pages`)	console.log(`Document	info:	${info}`)	return	{	pdf	}	}	}3.	Available	props	to	customize	the	PDF	viewer.pdf?:	PDFDocumentLoadingTask	page?:	number	scale?:	number	rotation?:	number
fitParent?:	boolean	width?:	number	height?:	number	textLayer?:	boolean	imageResourcesPath?:	string	hideForms?:	boolean	intent?:	string	annotationLayer?:	boolean	annotationsFilter?:	string[]	annotationsMap?:	object	watermarkText?:	string	watermarkOptions?:	WatermarkOptions	highlightText?:	string	highlightOptions?:	HighlightOptions4.
Watermark	options.{	columns?:	number	rows?:	number	rotation?:	number	fontSize?:	number	color?:	string	}5.	Highlight	options.{	ignoreCase?:	boolean	completeWords?:	boolean	}Preview:	Changelog:v1.9.6	(03/27/2024)Exports	style.css	explicitly	in	package.jsonRemoved	overflow:	hidden	from	container’s	stylesv1.9.5	(02/25/2024)‘Loaded’	events
has	been	added	in	order	to	have	more	control	about	rendering	process	of	page’s	layersv1.9.4	(01/13/2024)Add	types	and	support	for	null	and	undefined	values	when	reactivity	is	used	with	usePDFv1.9.3	(01/03/2024)Highlight	all	matches	found	in	the	same	HTML	elementv1.9.1	(01/02/2024)Added	intent	propAnnotationsLayer’s	imageResourcesPath
bind	prop	fixedv1.9.0	(12/17/2023)Added	support	for	outlinesAdded	highlight-text	and	hightlight-options	propsAdded	width	and	height	propsAdded	a	check	for	undefinied	value	in	usePDF’s	srcv1.8.1	(11/16/2023)Make	usePDF	reactivewatermark-options	prop	addedv1.7.4	(09/13/2023)v1.7.2	(08/24/2023)Added	support	for	High	DPI	screensFixed	the
position	style	of	loading	slotv1.7.0	(07/25/2023)Added	support	for	XFA	FormsAdded	watermark	textannotation-map	functionality	was	improvedv1.5.1	(06/15/2023)v1.5.0	(06/11/2023)fix:	annotations	values	missed	when	re-renderv1.4.8	(06/07/2023)v1.3.3	(01/20/2023)FIX:	usePDF	info	ref	fixedv1.2.3	(10/11/2022)	PDF	documents	are	the	preferred
format	for	many	things,	including	sharing	information	with	formatting	and	enhanced	data	visualization.	Therefore,	it’s	not	surprising	that	the	ability	to	open	and	annotate	PDF	documents	has	become	an	increasingly	demanded	feature	for	any	web	application	as	soon	as	it	grows	in	size	and	complexity.However,	adding	such	a	feature	to	a	web
application	usually	means	incrementing	the	number	of	“moving	parts”	of	a	codebase	by	orders	of	magnitude:	PDF	is	a	complex	file	format,	which	may	deem	the	task	overwhelming	for	any	development	team.You	can	simplify	this	task	significantly	by	making	use	of	PSPDFKit	for	Web,	a	JavaScript	PDF	library	that	can	be	used	with	(and	without)	any
JavaScript	framework,	including	Vue.js(opens	in	a	new	tab).	It	supports	all	modern	mobile	and	desktop	browsers	(Chrome,	Firefox,	Safari,	and	Edge)	and	multiple	languages,	and	it	makes	good	use	of	the	latest	technologies	available	—	like	WebAssembly	—	to	make	the	experience	as	performant	as	possible.PSPDFKit	for	Web	comes	in	two	flavors:
server-backed	and	standalone.	This	means	you	can	set	it	up	as	a	shared	collaboration	tool	that’s	integrated	with	your	server	backend,	or	as	a	client-side	library	with	all	the	features	you	may	need	for	your	PDF	document	handling.To	allow	developers	to	easily	embed	our	PDF	library	in	their	applications,	there	are	several	integration	examples	available.
In	this	article,	you’ll	learn	how	to	integrate	our	Vue.js	PDF	library,	which	you	can	clone	from	the	public	PSPDFKit	repository(opens	in	a	new	tab).	You’ll	build	a	small	app	in	a	single	HTML	file	that	will	fetch	all	the	assets	needed	to	load	and	run	PSPDFKit	for	Web	in	a	Vue.js	app.The	final	result	will	look	like	the	image	below	in	your	browser.	It’ll	consist
of	a	simple	UI	that	allows	you	to	open,	view,	and	annotate	PDF	documents	from	within	your	Vue.js	app.To	get	the	example	running,	you	need	the	following	tools:Create	a	new	Vue.js	projectSelect	Vue	3,	depending	on	your	preference.Navigate	to	the	project	directoryAdd	the	PSPDFKit	dependencyPrepare	the	PSPDFKit	libraryCreate	a	directory	under
public:Copy	the	PSPDFKit	library:cp	-R	./node_modules/pspdfkit/dist/pspdfkit-lib	public/js/pspdfkit-libEnsure	your	server	has	the	Content-Type:	application/wasm	MIME	type	set.	This	is	required	for	PSPDFKit.Create	the	component	fileIn	the	src/components	directory,	create	a	file	named	PSPDFKitContainer.vue.Start	by	defining	the	pdfFile	prop	in
your	component.	This	prop	is	required	and	will	hold	the	path	to	the	PDF	file	you	want	to	display.	By	passing	this	as	a	prop,	you	can	dynamically	load	different	PDF	files	into	the	viewer	from	outside	the	component:Create	the	loadPSPDFKit	methodNext,	define	the	loadPSPDFKit	method.	This	method	is	responsible	for	loading	the	PSPDFKit	viewer	with
the	PDF	file	provided	through	the	pdfFile	prop.	Since	PSPDFKit.load()	returns	a	Promise,	define	the	method	as	async.Make	sure	to	unload	any	existing	PSPDFKit	instance	before	loading	a	new	one.	This	prevents	memory	leaks	and	ensures	the	correct	PDF	is	always	displayed:	PSPDFKit.unload('.pdf-container');	container:	'.pdf-container',Clean	up	on
component	destructionTo	avoid	lingering	references	when	the	component	is	destroyed,	use	the	beforeDestroy	lifecycle	hook	to	unload	PSPDFKit.	This	ensures	the	viewer	instance	is	properly	cleaned	up:	PSPDFKit.unload('.pdf-container');Load	PSPDFKit	when	the	component	is	mountedTo	make	sure	PSPDFKit	is	loaded	as	soon	as	the	component	is
mounted,	call	the	loadPSPDFKit	method	within	the	mounted	lifecycle	hook.	Once	the	method	resolves	with	the	instance	of	PSPDFKit,	emit	a	loaded	event	with	the	instance	as	the	payload.	This	event	enables	you	to	use	the	instance	elsewhere	in	your	application:	this.loadPSPDFKit().then((instance)	=>	{	this.$emit('loaded',	instance);Watch	for	changes
to	the	pdfFile	propTo	handle	dynamic	changes	to	the	pdfFile	prop,	use	a	watch	handler.	This	allows	the	component	to	reload	the	PDF	whenever	the	prop	changes.	Additionally,	include	a	check	to	ensure	the	new	value	is	valid	before	attempting	to	reload	PSPDFKit:	if	(val)	this.loadPSPDFKit();Here’s	the	final	code	that	combines	all	these	steps:	import
PSPDFKit	from	'pspdfkit';	PSPDFKit.unload('.pdf-container');	container:	'.pdf-container',	PSPDFKit.unload('.pdf-container');	this.loadPSPDFKit().then((instance)	=>	{	this.$emit('loaded',	instance);	if	(val)	this.loadPSPDFKit();This	component	is	now	fully	capable	of	loading	PSPDFKit,	rendering	PDFs,	unloading	when	destroyed,	and	dynamically
switching	PDFs	based	on	the	provided	pdfFile	prop.Use	the	scoped	flag	to	make	sure	this	CSS	rule	only	applies	to	DOM	nodes	within	the	component	itself.	You	can	still	overwrite	CSS	rules	from	outside,	but	it’s	good	practice	to	prevent	accidental	overrides	across	your	project.	This	way,	the	component	can	also	be	freely	used	between	various	projects
without	having	to	reapply	styles	in	each	of	them.Now	that	you’ve	created	the	PSPDFKitContainer.vue	component,	the	next	step	is	to	import	and	use	it	within	the	main	Vue.js	page,	where	you	want	to	display	the	PDF.In	your	main	Vue	component	(e.g.	App.vue),	add	the	template	structure	that	includes	a	file	input	for	selecting	the	PDF	file	and	the
PSPDFKitContainer	component	to	display	the	selected	file:	The	element	is	used	to	select	the	PDF	file.The	PSPDFKitContainer	component	displays	the	PDF,	with	pdfFile	as	a	prop	containing	the	file	path.Import	the	PSPDFKitContainer	componentIn	the	script	section,	import	the	PSPDFKitContainer	component	so	that	it	can	be	used	in	the	template:
import	PSPDFKitContainer	from	'@/components/PSPDFKitContainer';	pdfFile:	this.pdfFile	||	'/example.pdf',	//	Default	PDF	file	to	display.	window.URL.revokeObjectURL(this.pdfFile);	//	Clean	up	old	file	reference.	//	Update	`pdfFile`	with	the	new	file	selected	by	the	user.	this.pdfFile	=	window.URL.createObjectURL(event.target.files[0]);The	pdfFile
data	property	stores	the	path	to	the	currently	selected	PDF.The	openDocument	method	handles	the	file	input	change,	generating	a	URL	for	the	selected	file	and	assigning	it	to	pdfFile.Prepare	your	PDF	documentAdd	the	example.pdf	file	to	the	public	directory	of	your	Vue.js	project.	The	public	directory	serves	static	files	directly	at	the	root	of	your
project,	making	it	easy	to	access	resources	like	images,	styles,	and	PDF	files.With	everything	set	up,	run	your	Vue	application:When	you	load	a	PDF,	the	PSPDFKit	viewer	will	display	the	document,	allowing	you	to	read,	annotate,	and	print	it	directly	from	your	browser.While	the	setup	above	works	well	for	displaying	a	PDF,	it’s	also	essential	to	manage
the	PSPDFKit	instance	when	switching	between	different	PDF	files.	To	handle	this,	watch	for	changes	in	the	pdfFile	prop	and	reload	the	viewer	when	a	new	file	is	selected.	You	also	need	to	handle	the	instance	returned	by	PSPDFKit.load()	for	advanced	functionality	like	annotations.Update	the	template	to	handle	loaded	eventsModify	the	template	to
listen	for	the	loaded	event	emitted	by	the	PSPDFKitContainer	component:	The	@loaded="handleLoaded"	directive	listens	for	when	the	PSPDFKit	instance	is	ready.In	the	script,	add	a	method	to	handle	the	loaded	event,	which	provides	the	PSPDFKit	instance	for	further	interaction:import	PSPDFKitContainer	from	'@/components/PSPDFKitContainer';
pdfFile:	this.pdfFile	||	'/example.pdf',	window.URL.revokeObjectURL(this.pdfFile);	this.pdfFile	=	window.URL.createObjectURL(event.target.files[0]);	console.log("PSPDFKit	has	loaded:	",	instance);	//	Perform	any	operations	with	the	PSPDFKit	instance,	like	adding	annotations.Here’s	a	step-by-step	guide	to	adding	custom	annotations	to	your	PDF	in	a
Vue.js	app	using	PSPDFKit.First,	add	a	data()	function	to	your	component	to	store	the	PSPDFKit	instance:	instance:	null,	//	This	will	hold	the	PSPDFKit	instanceCustomize	the	toolbar	to	include	a	custom	button	that	adds	an	ink	annotation.	Modify	the	loadPSPDFKit	method	to	include	the	custom	toolbar	button,	and	set	up	the	onPress	handler:
PSPDFKit.unload('.pdf-container');	const	instance	=	await	PSPDFKit.load({	container:	'.pdf-container',	title:	'Add	Ink	Annotation',	className:	'addInkAnnotation',	name:	'addInkAnnotation',	console.error('PSPDFKit	instance	is	not	available');	const	inkAnnotation	=	new	PSPDFKit.Annotations.InkAnnotation({	lines:	PSPDFKit.Immutable.List([
PSPDFKit.Immutable.List([new	PSPDFKit.Geometry.DrawingPoint({	x:	0,	y:	0	}),	new	PSPDFKit.Geometry.DrawingPoint({	x:	100,	y:	100	}),	const	createdAnnotations	=	await	instance.create(inkAnnotation);	console.log('Created	Ink	Annotations:',	createdAnnotations);	console.error('Error	creating	ink	annotation:',	error);	this.instance	=	instance;
this.$emit('loaded',	instance);	console.error('Error	loading	PSPDFKit:',	error);Update	the	mounted	lifecycle	hook	and	the	watch	property	to	ensure	the	instance	is	updated	when	needed:	this.loadPSPDFKit().then((instance)	=>	{	this.instance	=	instance;	//	Store	the	PSPDFKit	instance.	this.$emit('loaded',	instance);	//	Emit	an	event	when	loaded.
this.loadPSPDFKit().then((instance)	=>	{	this.instance	=	instance;	//	Update	the	instance	when	the	PDF	changes.Rebuild	your	Vue.js	app	and	load	a	PDF.	The	toolbar	will	now	include	a	button	labeled	Add	Ink	Annotation.	When	clicked,	it	adds	an	ink	annotation	with	predefined	drawing	points	to	the	first	page	of	your	PDF.	Adjust	the	drawing	points
and	other	parameters	as	necessary	to	fit	your	specific	requirements.This	post	focuses	on	adding	an	ink	annotation,	but	PSPDFKit	supports	various	annotation	types,	like	text	and	images.	Find	out	more	about	how	to	use	PSPDFKit.Instance#create()	by	browsing	the	PSPDFKit	for	Web	API	reference.In	this	blog,	you	learned	how	to	integrate	PSPDFKit’s
JavaScript	PDF	library	with	the	Vue.js	framework.	Once	you’ve	got	it	up	and	running,	you	can	enable	additional	features	and	customizations	in	your	application:At	PSPDFKit,	we	offer	a	commercial,	feature-rich,	and	completely	customizable	Vue.js	PDF	library	that’s	easy	to	integrate	and	comes	with	well-documented	APIs	to	handle	advanced	use	cases.
Try	it	for	free,	or	visit	our	web	demo	to	see	it	in	action.	PSPDFKit	for	Web	is	a	JavaScript	library	that	allows	developers	to	integrate	powerful	PDF	viewing	and	annotation	capabilities	into	web	applications,	including	those	built	with	Vue.js.	Yes,	you	can	use	PSPDFKit	for	Web	as	a	standalone	library	without	a	backend,	making	it	flexible	for	various
application	setups.	PSPDFKit	primarily	supports	PDF	files,	providing	extensive	features	for	viewing,	annotating,	and	manipulating	PDF	documents.	Yes,	PSPDFKit	offers	a	free	trial	that	allows	you	to	explore	its	features	before	committing	to	a	purchase.	You	can	report	issues	or	request	support	through	the	PSPDFKit	support	page	on	their	website.	11
Jun	202414	minutes	to	read	You	might	need	to	open	and	view	the	PDF	files	from	various	location.	In	this	section,	you	can	find	the	information	about	how	to	open	PDF	files	from	URL,	database	and	as	base64	string.	Opening	a	PDF	from	URL	If	you	have	your	PDF	files	in	the	web,	you	can	open	it	in	the	viewer	using	URL.	Step	1:	Create	a	Simple	PDF
Viewer	Sample	in	Vue	Start	by	following	the	steps	provided	in	this	link	to	create	a	simple	PDF	viewer	sample	in	Vue.	This	will	give	you	a	basic	setup	of	the	PDF	viewer	component.	Step	2:	Modify	the	PdfViewerController.cs	File	in	the	Web	Service	Project	Create	a	web	service	project	in	.NET	Core	3.0	or	above.	You	can	refer	to	this	link	for	instructions
on	how	to	create	a	web	service	project.	Open	the	PdfViewerController.cs	file	in	your	web	service	project.	Modify	the	Load()	method	to	open	it	in	the	viewer	using	URL	public	IActionResult	Load([FromBody]	Dictionary	jsonData)	{	//	Initialize	the	PDF	viewer	object	with	memory	cache	object	PdfRenderer	pdfviewer	=	new	PdfRenderer(_cache);
MemoryStream	stream	=	new	MemoryStream();	object	jsonResult	=	new	object();	if	(jsonObject	!=	null	&&	jsonObject.ContainsKey("document"))	{	if	(bool.Parse(jsonObject["isFileName"]))	{	string	documentPath	=	GetDocumentPath(jsonData["document"]);	if	(!string.IsNullOrEmpty(documentPath))	{	byte[]	bytes	=
System.IO.File.ReadAllBytes(documentPath);	stream	=	new	MemoryStream(bytes);	}	else	{	string	fileName	=	jsonData["document"].Split(new	string[]	{	"://"	},	StringSplitOptions.None)[0];	if	(fileName	==	"http"	||	fileName	==	"https")	{	WebClient	WebClient	=	new	WebClient();	byte[]	pdfDoc	=	WebClient.DownloadData(jsonData["document"]);
stream	=	new	MemoryStream(pdfDoc);	}	else	{	return	this.Content(jsonData["document"]	+	"	is	not	found");	}	}	}	else	{	byte[]	bytes	=	Convert.FromBase64String(jsonObject["document"]);	stream	=	new	MemoryStream(bytes);	}	}	jsonResult	=	pdfviewer.Load(stream,	jsonObject);	return	Content(JsonConvert.SerializeObject(jsonResult));	}	Step	3:
Set	the	PDF	Viewer	Properties	in	React	PDF	viewer	component	Modify	the	serviceUrl	property	of	the	PDF	viewer	component	with	the	accurate	URL	of	your	web	service	project,	replacing	with	the	actual	URL	of	your	server.Modify	the	documentPath	with	the	correct	PDF	Document	URL	want	to	load.	import	{	provide	}	from	"vue";	import	{
PdfViewerComponent	as	EjsPdfviewer,	Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner	}	from	'@syncfusion/ej2-vue-pdfviewer';	//	Replace	the	"localhost:44396"	with	the	actual	URL	of	your	server	const	serviceUrl	=	"	;	//	Replace	correct	PDF
Document	URL	want	to	load	const	documentPath	=	"	;	provide('PdfViewer',	[Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner]);	import	{	PdfViewerComponent,	Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,
ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner	}	from	'@syncfusion/ej2-vue-pdfviewer';	export	default	{	name:	'app',	components:	{	'ejs-pdfviewer':	PdfViewerComponent	},	data()	{	return	{	//	Replace	the	"localhost:44396"	with	the	actual	URL	of	your	server	serviceUrl:	"	,	//	Replace	correct	PDF	Document
URL	want	to	load	documentPath:	"	};	},	provide:	{	PdfViewer:	[Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner]	}	}	View	sample	in	GitHub	Opening	a	PDF	from	base64	data	The	following	code	steps	how	the	PDF	file	can	be	loaded	in	PDF
Viewer	as	base64	string.	Step	1:	Create	a	Simple	PDF	Viewer	Sample	in	Angular	Start	by	following	the	steps	provided	in	this	link	to	create	a	simple	PDF	viewer	sample	in	Angular.	This	will	give	you	a	basic	setup	of	the	PDF	viewer	component.	Step	2:	Use	the	following	code	snippet	to	load	the	PDF	document	using	a	base64	string.
LoadDocumentFromBase64	import	{	provide,	ref	}	from	"vue";	import	{	PdfViewerComponent	as	EjsPdfviewer,	Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner	}	from	'@syncfusion/ej2-vue-pdfviewer';	const	pdfviewer	=	ref(null);	//	Replace
the	"localhost:44396"	with	the	actual	URL	of	your	server	const	serviceUrl	=	"	;	provide('PdfViewer',	[Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner]);	//	Event	triggers	on	the	Export	FDF	button	click.	const	load	=	function	()	{
pdfviewer.value.ej2Instances.load('data:application/pdf;base64,'	+	AddBase64String,	null);	}	LoadDocumentFromBase64	import	{	PdfViewerComponent,	Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner	}	from	'@syncfusion/ej2-vue-
pdfviewer';	export	default	{	name:	'App',	components:	{	'ejs-pdfviewer':	PdfViewerComponent	},	data()	{	return	{	//	Replace	the	"localhost:44396"	with	the	actual	URL	of	your	server	serviceUrl:	"	}	},	methods:	{	//	Event	triggers	on	the	Export	PDF	button	click.	load:	function	()	{	pdfviewer.value.ej2Instances.load('data:application/pdf;base64,'	+
AddBase64String,	null);	}	},	provide:	{	PdfViewer:	[Toolbar,	Magnification,	Navigation,	LinkAnnotation,	BookmarkView,	ThumbnailView,	Print,	TextSelection,	TextSearch,	Annotation,	FormFields,	FormDesigner]	}	}	View	sample	in	GitHub	Opening	a	PDF	from	database	To	load	a	PDF	file	from	SQL	Server	database	in	a	PDF	Viewer,	you	can	follow	the
steps	below	Step	1:	Create	a	Simple	PDF	Viewer	Sample	in	Vue	Start	by	following	the	steps	provided	in	this	link	to	create	a	simple	PDF	viewer	sample	in	Vue.	This	will	give	you	a	basic	setup	of	the	PDF	viewer	component.	Step	2:	Modify	the	PdfViewerController.cs	File	in	the	Web	Service	Project	Create	a	web	service	project	in	.NET	Core	3.0	or	above.
You	can	refer	to	this	link	for	instructions	on	how	to	create	a	web	service	project.	Open	the	PdfViewerController.cs	file	in	your	web	service	project.	Import	the	required	namespaces	at	the	top	of	the	file:	using	System.IO;	using	System.Data.SqlClient;	Add	the	following	private	fields	and	constructor	parameters	to	the	PdfViewerController	class,	In	the
constructor,	assign	the	values	from	the	configuration	to	the	corresponding	fields	private	IConfiguration	_configuration;	public	readonly	string	_connectionString;	public	PdfViewerController(IWebHostEnvironment	hostingEnvironment,	IMemoryCache	cache,	IConfiguration	configuration)	{	_hostingEnvironment	=	hostingEnvironment;	_cache	=	cache;
_configuration	=	configuration;	_connectionString	=	_configuration.GetValue("ConnectionString");	}	Modify	the	Load()	method	to	open	it	in	the	viewer	using	URL	public	IActionResult	Load([FromBody]	Dictionary	jsonData)	{	//	Initialize	the	PDF	viewer	object	with	memory	cache	object	PdfRenderer	pdfviewer	=	new	PdfRenderer(_cache);
MemoryStream	stream	=	new	MemoryStream();	object	jsonResult	=	new	object();	if	(jsonObject	!=	null	&&	jsonObject.ContainsKey("document"))	{	if	(bool.Parse(jsonObject["isFileName"]))	{	string	documentPath	=	GetDocumentPath(jsonData["document"]);	if	(!string.IsNullOrEmpty(documentPath))	{	byte[]	bytes	=
System.IO.File.ReadAllBytes(documentPath);	stream	=	new	MemoryStream(bytes);	}	string	documentName	=	jsonObject["document"];	string	connectionString	=	_connectionString;	System.Data.SqlClient.SqlConnection	connection	=	new	System.Data.SqlClient.SqlConnection(connectionString);	//Searches	for	the	PDF	document	from	the	database
string	query	=	"SELECT	FileData	FROM	Table	WHERE	FileName	=	'"	+	documentName	+	"'";	System.Data.SqlClient.SqlCommand	command	=	new	System.Data.SqlClient.SqlCommand(query,	connection);	connection.Open();	using	(SqlDataReader	reader	=	command.ExecuteReader())	{	if	(reader.Read())	{	byte[]	byteArray	=
(byte[])reader["FileData"];	stream	=	new	MemoryStream(byteArray);	}	}	}	else	{	byte[]	bytes	=	Convert.FromBase64String(jsonObject["document"]);	stream	=	new	MemoryStream(bytes);	}	}	jsonResult	=	pdfviewer.Load(stream,	jsonObject);	return	Content(JsonConvert.SerializeObject(jsonResult));	}	Open	the	appsettings.json	file	in	your	web	service
project,	Add	the	following	lines	below	the	existing	"AllowedHosts"	configuration	{	"Logging":	{	"LogLevel":	{	"Default":	"Information",	"Microsoft.AspNetCore":	"Warning"	}	},	"AllowedHosts":	"*",	"ConnectionString":	"Your	connection	string	for	SQL	server"	}	Replace	Your	Connection	string	from	SQL	server	with	the	actual	connection	string	for	your
SQL	Server	database	The	System.Data.SqlClient	package	must	be	installed	in	your	application	to	use	the	previous	code	example.	You	need	to	modify	the	connectionString	variable	in	the	previous	code	example	as	per	the	connection	string	of	your	database.	View	sample	in	GitHub	Vue.js(opens	in	a	new	tab)	is	a	frontend	JavaScript	framework	for
building	single-page	applications	(SPAs)	and	user	interfaces	(UIs),	and	it’s	the	second-most	starred	GitHub	repository(opens	in	a	new	tab).	It	enables	users	to	create	rapid	prototypes	and	build	fast	and	reliable	applications.In	this	blog	post,	we’ll	use	Vue.js	to	create	a	PDF	viewer	with	PDF.js.	PDF.js(opens	in	a	new	tab)	is	an	open	source	JavaScript
library	that	allows	you	to	view	PDF	files	in	your	browser.In	the	first	part,	we’ll	look	at	how	to	create	the	PDF	viewer	with	an	open	source	library.	In	the	second	part,	we’ll	provide	a	step-by-step	guide	on	how	to	integrate	the	PSPDFKit	Vue.js	PDF	viewer	library	into	the	Vue.js	project.	Our	viewer	library	provides	some	benefits	beyond	what	PDF.js
provides,	including:A	prebuilt	UI	—	Save	time	with	a	well-documented	list	of	APIs	when	customizing	the	UI	to	meet	your	exact	requirements.Annotation	tools	—	Draw,	circle,	highlight,	comment,	and	add	notes	to	documents	with	15+	prebuilt	annotation	tools.Multiple	file	types	—	Support	client-side	viewing	of	PDFs,	MS	Office	documents,	and	image
files.30+	features	—	Easily	add	features	like	PDF	editing,	digital	signatures,	form	filling,	real-time	document	collaboration,	and	more.Dedicated	support	—	Deploy	faster	by	working	1-on-1	with	our	developers.PDF	viewers	are	essential	tools	for	enhancing	user	experience	in	web	applications	by	allowing	users	to	view	and	interact	with	PDF	documents
directly	within	the	browser.	This	seamless	integration	eliminates	the	need	to	download	files	or	open	them	in	a	separate	application,	saving	time	and	creating	a	more	cohesive	experience.A	PDF	viewer	lets	users	view	documents	without	leaving	the	current	tab,	which	is	particularly	useful	for	applications	where	document	interaction	is	frequent.	PDF
viewers	typically	offer	features	such	as	zoom,	page	navigation,	and	text	selection,	allowing	users	to	interact	with	and	read	content	more	effectively.For	Vue.js	developers,	there	are	both	open	source	and	commercial	options	available	for	implementing	a	PDF	viewer:Open	source	libraries	like	PDF.js,	vue-pdf,	and	pdfvuer	offer	essential	functionality	and
are	straightforward	to	integrate,	making	them	suitable	for	basic	document	viewing	needs.Commercial	solutions	like	Nutrient	offer	advanced	features	such	as	annotations,	form	filling,	and	real-time	collaboration,	providing	a	more	feature-rich	experience	for	complex	applications.This	article	will	explore	both	open	source	and	commercial	options,
guiding	you	through	building	a	Vue.js	PDF	viewer	with	PDF.js	and	integrating	Nutrient	for	a	more	robust	solution.To	get	started,	you’ll	need:There	are	two	main	PDF.js	wrappers	available	to	make	the	task	of	creating	a	PDF	viewer	with	Vue.js	easier:	vue-pdf(opens	in	a	new	tab)	and	pdfvuer(opens	in	a	new	tab).	Let’s	look	at	their	respective	advantages
and	disadvantages	and	decide	which	one	to	use.It	has	around	163K	monthly	downloads	on	npm.It’s	easy	to	use,	and	it	has	an	easy	setup.It	currently	doesn’t	support	Vue	3.The	library	owner	isn’t	responsive.When	printing	your	files,	you	may	get	a	bug(opens	in	a	new	tab).	There’s	been	a	solution	for	this	since	2019,	but	the	PR(opens	in	a	new	tab)	isn’t
merged	into	the	main	branch.It’s	not	actively	maintained.It	lacks	documentation	and	examples.It	has	around	22K	monthly	downloads	on	npm.It	has	support	for	Vue	2	and	Vue	3.It	lacks	documentation	and	examples.It	doesn’t	have	many	options	to	customize	your	project.In	this	blog	post,	we’ll	use	the	pdfvuer	library	because	it	supports	both	version	2
and	version	3	of	Vue.js.To	work	with	Vue.js,	we	need	to	install	Vue	CLI(opens	in	a	new	tab)	(command-line	interface),	which	is	standard	tooling	for	Vue.js.	It	helps	you	create,	build,	and	run	Vue.js	applications.You	can	install	the	CLI	using	npm(opens	in	a	new	tab),	which	comes	with	Node.js,	or	yarn(opens	in	a	new	tab):You	can	check	the	version	of	Vue
by	running	the	following:In	this	blog	post,	we’re	using	Vue	CLI	version	4.5.15.Vue	CLI	gives	us	an	easy	way	to	create	our	projects	by	using	the	following	command:vue	create	pdfvuer-exampleHere,	we’re	using	the	create	option	with	the	name	of	the	project	we	want	to	create	(pdfvuer-example).It’ll	then	ask	some	configuration	questions.Select	Default
(Vue	3)	([Vue	3]	babel,	eslint)	from	the	list.Now,	change	the	directory	to	pdfvuer-example:Run	the	command	below	to	install	the	pdfvuer	library	via	npm	or	yarn.	This	will	work	with	Vue	3:npm	install	pdfvuer@next	--saveAdd	your	PDF	document	to	the	public	directory.	You	can	use	our	demo	document	as	an	example.Now,	go	to	your	App.vue	file	inside
the	src	directory	and	add	the	following	code:	import	pdf	from	'pdfvuer';In	the	script	tag,	we’re	importing	and	exporting	the	pdf	component	from	the	pdfvuer	library.In	the	template	tag,	we’re	creating	a	pdf	element	by	passing	the	src	attribute	with	the	name	of	the	PDF	file.	We’re	also	passing	the	page	attribute	with	the	number	of	the	page	we	want	to
display.	It’ll	show	the	first	page	of	our	document.When	you	start	the	app,	you’ll	see	the	PDF	rendered	in	the	browser.	Use	the	following	command	to	run	the	project:You	can	see	the	app	running	at	���	Tip:	You	can	access	the	source	code	for	this	project	on	GitHub(opens	in	a	new	tab).As	you	can	see,	this	library	didn’t	give	us	many	options	to
customize	the	PDF	viewer.	We	can	only	display	the	first	page	of	our	document,	and	there’s	no	way	to	navigate	through	the	pages.We’ll	move	on	to	the	next	part	of	the	article	to	see	how	PSPDFKit	for	Web	can	help	us.PSPDFKit	offers	a	versatile	PDF	library	that	can	be	used	to	build	a	Vue.js	PDF	viewer.	It	provides	more	than	30	out-of-the-box	features,
including:You	can	integrate	it	into	your	new	or	existing	Vue.js	projects	with	a	couple	of	steps.Now,	let’s	go	back	to	our	tutorial	and	see	how	to	integrate	PSPDFKit	into	your	Vue.js	project.Create	a	new	Vue.js	project	for	PSPDFKit	integration:vue	create	pspdfkit-vue-projectThis	will	ask	some	configuration	questions.Select	Default	(Vue	3)	([Vue	3]	babel,
eslint)	from	the	list,	and	change	the	directory	to	pspdfkit-vue-project:Install	pspdfkit	as	a	dependency	with	npm	or	yarn:Now,	we	can	start	building	our	Vue.js	project.	First,	let’s	create	a	js	directory	under	the	public	directory.	Go	to	your	terminal	and	run:Copy	the	PSPDFKit	for	Web	library	assets	to	the	public/js	directory:cp	-R
./node_modules/pspdfkit/dist/pspdfkit-lib	public/js/pspdfkit-libThis	will	copy	the	pspdfkit-lib	directory	from	within	node_modules/	into	the	public/js/	directory	to	make	it	available	to	the	SDK	at	runtime.Add	the	PDF	document	you	want	to	display	to	the	public	directory.	You	can	use	our	demo	document	as	an	example.Add	a	component	wrapper	for	the
PSPDFKit	library	and	save	it	as	src/components/PSPDFKitContainer.vue:	import	PSPDFKit	from	'pspdfkit';	*	The	component	receives	the	`pdfFile`	prop,	which	is	type	of	`String`	and	is	required.	*	We	wait	until	the	template	has	been	rendered	to	load	the	document	into	the	library.	this.loadPSPDFKit().then((instance)	=>	{	this.$emit('loaded',	instance);
*	We	watch	for	`pdfFile`	prop	changes	and	trigger	unloading	and	loading	when	there's	a	new	document	to	load.	*	Our	component	has	the	`loadPSPDFKit`	method.	This	unloads	and	cleans	up	the	component	and	triggers	document	loading.	PSPDFKit.unload('.pdf-container');	//	To	access	the	`pdfFile`	from	props,	use	`this`	keyword.	container:	'.pdf-
container',	*	Clean	up	when	the	component	is	unmounted	so	it's	ready	to	load	another	document	(not	needed	in	this	example).	PSPDFKit.unload('.pdf-container');Let’s	look	at	what’s	happening	in	our	component:The	template	section	is	rendering	a	div	with	the	pdf-container	class.	This	will	help	us	declaratively	bind	the	rendered	DOM	to	the	underlying
component	instance’s	data.The	script	section	is	defining	a	Vue.js	instance	named	PSPDFKit	and	creating	methods	for	mounting,	loading,	and	unloading	PDF	files	into	the	pdf-container.The	style	section	is	defining	the	height	of	the	container.Now,	replace	the	contents	of	src/App.vue	with	the	following:	import	PSPDFKitContainer	from
'@/components/PSPDFKitContainer';	pdfFile:	this.pdfFile	||	'/example.pdf',	*	Render	the	`PSPDFKitContainer`	component.	*	Our	component	has	two	methods	—	one	to	check	when	the	document	is	loaded,	and	the	other	to	open	the	document.	console.log('PSPDFKit	has	loaded:	',	instance);	//	To	access	the	Vue	instance	data	properties,	use	`this`
keyword.	window.URL.revokeObjectURL(this.pdfFile);	this.pdfFile	=	window.URL.createObjectURL(In	the	template	section,	we	have	a	file	upload	input	and	the	PSPDFKitContainer	component.Vue.js	uses	directives	to	handle	some	types	of	functionality.	For	the	input	field,	we’re	using	the	'v-on'	directive	to	attach	an	event	listener	to	the	element.	In	our
case,	it’s	the	'change'	event.	There’s	a	shortcut	to	'v-on'	that	removes	the	keyword	and	uses	an	'@'	symbol	instead.v-on:change="openDocument"v-on:loaded="handleLoaded"Similar	to	the	input	field,	for	the	PSPDFKitContainer	component,	we’re	using	the	v-bind	directive	to	bind	the	pdfFile	property	to	the	pdfFile	property	of	the	component	and
attaching	an	event	listener	for	the	loaded	event:In	the	script	section,	you	can	see	the	implementation	of	the	handleLoaded	and	openDocument	methods.	Also,	there’s	a	data	function	that	returns	the	pdfFile	property.The	data	keeps	track	of	reactive	state	within	the	current	component.	It’s	always	a	function	and	returns	an	object.	The	object’s	top-level
properties	are	exposed	via	the	component	instance.In	the	style	section,	we	have	styles	for	custom	file	input,	and	there	are	some	general	styles	for	the	app.You	can	see	the	application	running	on	localhost:8080.	If	you	can’t	see	your	PDF	file	rendered	in	the	browser,	make	sure	you	actually	uploaded	a	PDF	file	inside	the	public	directory.In	the	demo
application,	we	can	open	different	PDF	files	by	clicking	the	Open	PDF	button.	We	can	add	signatures,	annotations,	stamps,	and	more.	Tip:	All	the	finished	code	is	available	on	GitHub(opens	in	a	new	tab).	 	You	can	find	the	example	code	for	Vue	2	in	the	vue-2	branch.In	this	tutorial,	we	looked	at	how	to	build	both	a	Vue.js	PDF	viewer	with	an	open
source	library	and	a	PSPDFKit	Vue.js	PDF	viewer	that	allows	you	to	display	and	render	PDF	files	in	your	Vue.js	application.We	created	similar	how-to	blog	posts	using	different	web	frameworks	and	libraries:Open	source	Vue.js	libraries	are	good	options	if	you	want	to	build	the	UI	and	features	yourself.	However,	this	can	get	complicated	easily,	as	you
may	not	get	the	support	you	need.	Opting	for	a	commercial	solution	lets	you	focus	on	other	areas	of	your	business	and	move	up	the	value	chain.At	PSPDFKit,	we	offer	a	commercial,	feature-rich,	and	completely	customizable	JavaScript	PDF	library	that’s	easy	to	integrate	and	comes	with	well-documented	APIs	to	handle	advanced	use	cases.	Try	it	for
free,	or	visit	our	demo(opens	in	a	new	tab)	to	see	it	in	action.	You	can	install	pdfvuer	using	npm	with	the	command	npm	install	pdfvuer@next	--save	or	with	yarn	using	yarn	add	pdfvuer@next.	PSPDFKit	offers	more	than	30	features	including	annotation	tools,	PDF	form	filling,	document	editing,	and	real-time	collaboration,	along	with	dedicated
support.	Add	the	pdfvuer	library	to	your	project,	then	use	the	component	in	your	Vue	template	to	display	the	PDF	by	specifying	the	src	attribute	with	the	path	to	your	PDF	file.	Use	a	file	input	element	to	upload	PDF	files,	create	an	object	URL	for	the	selected	file,	and	pass	it	to	the	PSPDFKit	component	in	your	Vue.js	application.	Since	my	last	post	on
building	PDF	Viewer	with	Vue.js,	I	have	been	hard	at	work	to	develop	a	library	that	just	works:	Vue	PDF	Viewer.	After	being	in	private	beta	for	a	few	months,	we	officially	launched	Vue	PDF	Viewer	earlier	this	month.	In	this	article,	I'll	be	sharing	with	you	how	to	render	a	PDF	in	Vue.js	in	just	minutes,	along	with	a	few	use	cases	to	help	you	make	the
most	out	of	this	library.	Why	Vue	PDF	Viewer?	Let’s	start	with	why	Vue	PDF	Viewer	stands	out.	Here’s	a	quick	rundown	of	its	key	features:	Built	for	Vue:	Designed	specifically	for	Vue.js	developers,	Vue	PDF	Viewer	is	designed	using	familiar	Vue’s	component-based	structure,	syntax	and	state	management	for	Vue.js	developers	to	customize	natively.
Quick	Setup:	Go	from	zero	to	a	fully	functional	PDF	viewer	in	just	3	simple	steps.	Customizable:	Supports	themes,	responsive	layouts,	and	custom	icons,	allowing	you	to	tailor	the	viewer	to	fit	your	app’s	design.	High	Performance:	Optimized	for	handling	multiple	PDFs	without	sacrificing	speed	or	performance.	Now,	let’s	dive	into	the	step-by-step
process	to	get	started	with	Vue	PDF	Viewer.	Displaying	a	PDF	Viewer	Component	Vue	PDF	Viewer	supports	Vue	3.	It	also	works	seamlessly	across	a	wide	range	of	environments,	including:	Vue	3	–	Composition	API	(TypeScript,	JavaScript)	Vue	3	–	Options	API	(TypeScript,	JavaScript)	Vue	3	–	Server-Side	rendering	(TypeScript)	Nuxt	VitePress	Quasar
For	this	demo,	I’ll	show	you	how	to	add	the	Vue	PDF	Viewer	component	to	a	Vue	app.	Step	1:	Adding	the	Library	To	get	started,	add	the	Vue	PDF	Viewer	library	to	your	project.	It’s	a	quick	and	easy	installation.	bun	add	@vue-pdf-viewer/viewer	Remark:	You	can	use	yarn,	npm	or	pnpm.	Step	2:	Importing	the	Component	Next,	we’ll	import	the	PDF
viewer	component	into	your	Vue	application.	import	{	VPdfViewer	}	from	"@vue-pdf-viewer/viewer";	Step	3:	Render	the	Component	Finally,	render	the	component	and	pass	in	the	required	props	to	display	your	PDF	document.	import	{	VPdfViewer	}	from	"@vue-pdf-viewer/viewer";

